Ростех: Как это работает. Гироскоп

От детского волчка до полетов в космос
В основе многих научных открытий лежит наблюдение за простыми повседневными вещами. Так и один из важных приборов, применяющихся в составе современных устройств, – гироскоп – родился из старинной детской игрушки, известной как волчок. Сильно раскрученный волчок, удерживающий вертикальное положение даже при воздействии на него внешних сил, привлек внимание ученых. Изучая его свойства, люди науки задумывались о практическом применении эффекта. Волчком интересовались англичанин Исаак Ньютон, российский академик Леонард Эйлер, опубликовавший в 1765 году труд «Теория движения твердых тел», и другие ученые.

Следующим шагом в истории гироскопии стало создание лазерного гироскопа. Подготовка к его «рождению» заняла практически весь XX век, ведь для этого нужно было подтянуть квантовую физику и создать новые методы обработки материалов. Разработка лазерных гироскопов началась в 1970-х годах, а массовое применение пришлось на 2000-е. Сегодня мы находимся на этапе развития нового поколения гироскопов – волновых твердотельных и микромеханических.
В наше время гироскопы применяются в самых разных областях: для стабилизации фото- и видеокамер, в мобильных устройствах и игровых контроллерах, в огнестрельном оружии и робототехнике, в гироскутерах и квадрокоптерах, в системах навигации и управления в авиации, на кораблях и в космосе. Современные гироскопы на МЭМС-технологиях могут достигать миллиметровых размеров.
Устройство механического гироскопа
Как мы уже выяснили, гироскопы различаются в зависимости от принципа действия. Волчок, или юла – это простейший вариант механического гироскопа. Если массивный волчок раскрутить до достаточно высокой скорости, он сможет долго простоять в вертикальном положении, пока не затормозится, а также практически не отклоняться по вертикальной оси при применении к нему силы. Волчок не падает благодаря тому, что вращающееся тело стремится сохранить величину своей угловой скорости и направление оси вращения. Свободно вращающийся волчок под воздействием внешней силы отклоняется не в направлении этой силы, а перпендикулярно ей. Это явление называется прецессией.
Рассмотрим устройство на примере чуть более сложного роторного гироскопа с тремя степенями свободы. Подобный гироскоп, способный выполнять роль гирокомпаса, демонстрировал Леон Фуко. Три степени свободы гироскопа обеспечиваются с помощью карданового подвеса. Он состоит из двух колец: большого кольца, которое может вращаться вокруг вертикальной оси, и малого кольца, вращающегося вокруг горизонтальной оси. Внутри малого кольца закрепляется вращающееся тело – ротор. В результате благодаря кардановой системе подвеса ось ротора может иметь любое направление.

На этих свойствах вращающегося гироскопа основана работа гирокомпаса. Например, в авиации гирокомпас позволяет определять положение самолета в отсутствие ориентиров. Если самолет кренится в продольной или поперечной плоскости, с помощью гирокомпаса пилот увидит это отклонение по приборам. Кроме того, гирокомпас необходим в работе автопилота.
При очевидной полезности у механического гироскопа есть ряд недостатков. Для его стабильной работы нужны уникальные подшипники и предельная балансировка. Кроме того, на точность показаний влияет неизбежное трение в осях устройства.
Лазерный гироскоп − до сих пор на высоте
Избавиться от перечисленных слабых мест механики удалось в гироскопах следующего поколения − лазерных. В основе работы лазерного гироскопа – эффект Саньяка, открытый еще в 1913 году. Его суть заключается в том, что время прохождения светового луча по замкнутому контуру зависит от того, покоится или вращается данный контур, а также от направления его вращения. Применить этот эффект в гироскопии удалось только с появлением лазеров.
Первые работы по созданию лазерного гироскопа были начаты практически одновременно в США и СССР. В 1962 году американские ученые В. Мацек и Д. Девис создали и запустили первый макетный образец лазерного гироскопа на базе кольцевого газового He-Ne-лазера. В середине 1963 года аналогичный результат был достигнут советскими учеными Л.Н. Курбатовым (НИИПФ) и В.Н. Курятовым (НИИ «Полюс» им. М.Ф. Стельмаха, сегодня входит в холдинг «Швабе» Ростеха).

Сегодня применяются лазерные гироскопы трех основных типов – вибрационный, фарадеевский и зеемановский. У первого частотная подставка основана на механическом реальном вращении гироскопа путем угловых вибраций, у второго и третьего – на искусственном, электрически управляемом расщеплении частот встречных волн в гироскопе. Лазерные гироскопы используются в составе инерциальных навигационных систем, позволяющих определять местоположение самолета без опоры на внешние источники информации.
Помимо НИИ «Полюс» им. М.Ф. Стельмаха на сегодняшний день масштабными производителями лазерных гироскопов являются Раменский приборостроительный завод и Тамбовский завод «Электроприбор», входящие в «Концерн Радиоэлектронные технологии». Их гироскопы применяются в навигационных устройствах, которые устанавливаются на десятки моделей российских самолетов и вертолетов. Несмотря на общую тенденцию к миниатюризации техники и на совершенствование гироскопов на основе микроэлектромеханических систем (МЭМС-технологии), лазерные гироскопы в силу своей высокой точности продолжают доминировать на рынке навигационных устройств.
Источник: Ростех